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LElTER TO THE EDITOR 
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Abstract. The acceleration-acceleration correlation function, K ( t )  = ( a (  f )  a ( 0 ) )  
( a  = d2r/dt2,  where r is the displacement), of a random walker on a fractal lattice is studied 
analytically and numerically on percolation clusters and on diffusion-limited aggregates 
at dimensions d = 2 , 3 .  After t (  >>1) discrete time steps, we find K( t )  = A (  r ) / ( r 2 (  I ) ) ,  with 
A(I)-(-I)’ .  At a fixed distance R from the origin we find the superuniversal law 
K (  R )  - R-* on all fractals and for all d. 

Many macroscopically inhomogeneous systems are characterised by the existence of 
self-similar structures on certain scales. These include metal-insulator mixtures near 
the percolation threshold, diffusion-limited aggregates, polymer solutions, etc. The 
progress made in understanding transport in such systems reveals unusual behaviour 
of various transport coefficients [l-41. Naturally, much effort has been devoted to 
characterising the underlying universal properties of the relevant quantities (e.g. 
evaluating the critical exponents) [ 5 ] .  The aim of the present letter is to propose a 
‘superuniversal’ exponent, characterising diffusion on fractals. 

Consider a random walker on a discrete fractal network. If the probability to hop 
from site r’ to its nearest-neighbour site r is W(r,  r’) ,  then the occupation probability 
at site r at time t, P(r ,  t ) ,  obeys the master equation 

If a particular walk went through sites r (  t - I) ,  r( t )  and r (  t + 1) at the corresponding 
discrete time steps, the local acceleration is defined as a(  t )  = [ r (  t + 1) + r( t - 1) - 2r( t)]. 
We can now consider the acceleration correlation function K (  t )  = ( a ( 0 )  * a( t)), where 
the average is performed over all possible walks of t time step, starting at all possible 
origins. We find that the function K ( r )  performs a regular oscillation with time, 
K (  t )  = IK( t)l(-l)‘ (figure 1). The envelope IK( t ) l  is found to be inversely proportional 
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Figure 1. Raw average values of the correlation function for 100 steps of random walk on 
a percolation cluster at P, (same data as in figure 2 ( a ) ) .  All 100 points are plotted and 
the sign changes at every step. The standard errors, as determined by batch standard 
deviation (see text) are always smaller than the size of the symbol and very close to it 
toward the 100th step. 

to the mean square distance travelled by the walker, ( r 2 ( t ) ) ,  which is known [ 2 ]  to 
have the anomalous time dependence t2'(2+e).  The law 

K ( t )  =(a (O)  a(t )P(- l ) ' / (r"t ) )  ( 2 )  
is found to superuniversal, i.e. true for all random walks on all fractals, independent 
of their fractal dimensionalities or any other individual characteristics. 

Alternatively, one may average the acceleration correlation function for a fixed 
distance R between the two ends of the walk, K ( R ) = ( a ( O )  * a ( R ) ) .  We find the 
superuniversal law IK(R)lcc I R I - ~ .  

Figures 2 and 3 exhibit examples of our computer simulation results of random 
walks on large percolation clusters (at the percolation threshold) and on diffusion- 
limited aggregates (DLA) on both square and simple cubic lattices (see [6] for a 
preliminary account of these simulations). The simulations used the 'myopic ant' 
model [7] for which the walker must moue at each time step, and thus W ( r ,  r') = l /z(r') ,  
z ( r ' )  being the number of occupied nearest neighbours of site r'. We averaged 
a ( 0 )  - a ( r )  and r 2 ( t )  and the figures show the envelope IK(r)l. Convergence is faster 
for percolation in d = 2 and DLA in d = 3. The statistical error of the averages of K (  1 )  
was calculated by first subdividing the data into several subsets (typically five) and 
then computing the standard deviations among the batch averages. For example, for 
the percolation clusters in d = 2 for each of the two clusters simulated, five batches of 
lo6 walks of 100 steps each were used. The standard deviation for K ( 2 )  varied from 
0.1% for the first few steps to -5% at the 100th step. In d = 3  the error was -10% 
at the 500th step. Similar errors were obtained for DLA. Within the standard error 
bars (figures 2 and 3) our data are consistent with the straight lines lK(t)l-l/(r2(t)) 
(also shown in the figures). The numerical results presented should be taken only as 
an indication of the universal behaviour predicted here. Although we have averaged 
over a relatively large number of walks, these walks are rather short. We now present 
several analytical arguments supporting and explaining our predictions. 

Consider a 
particular walk that went via the sequence of sites r , ,  r2 ,  r3 at t = 0, and then went 

The following scaling argument explains the result IK(R)l= 
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Figure 2. Acceleration-acceleration correlations for diffusion on percolation clusters plotted 
against ( r ’ ) .  A line with slope -1 is drawn to guide the eye. The two symbols represent 
averages over two different 2500 site clusters. (a )  Square lattice; 5 x lo6 walks of 100 steps 
on each cluster. All standard errors are smaller than the symbol size. (b)  Simple cubic 
lattice; 5 x lo6 walks of 100 steps on one cluster and 2.5 x lo6 walks of 500 steps on the 
other. Only a few selected error bars (at the 200th, 300th, 400th and 500th steps) are drawn. 
The errors for steps up to 100 are smaller than the symbol size. 
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Figure 3. Acceleration-acceleration correlations for diffusion on DLA. ( a )  Square lattice; 
5 x lo6 walks on 100 steps on each cluster (cluster sizes: 6000 and 5910 sites). Only the 
error at the 100th step for one cluster is drawn, all other errors being smaller than the 
symbol size. (6)  Simple cubic; 0.5 x lo6 walks of 100 steps on a 1706 site cluster and 
1.5 x lo6 walks of 400 steps on a 4310 site cluster. Error bars are drawn at selected steps 
(80th, 120th, 200th, 300th and 400th steps), errors for steps up to the 60th being within 
the size of the symbol. 
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via r { ,  r;, r; at some later time, with r ; - r 2 =  R. Considering all possible walks, the 
probability of this particular walk is 

(3) 

where S ( r )  = 1 if r = 0 and zero otherwise, while p ( r )  is the average probability (per 
step on a specific walk) to pass through r. For very long walks, the p ( r )  become 
independent of each other. The average acceleration correlation function is therefore 

w = W(rL 4 ) W ( & ,  rlIW(r3, d W ( r 2 ,  r,)p(r2)p(r5)S(r~-r2-R) 

K ( R ) =  C ( r l + r 3 - 2 r 2 )  * ( r l + r ; - 2 r ; ) w ( C C  w ) - ’ .  (4) 
r 1 ~ r 2 . h  r i A r i  

For the ‘blind’ ant, W(r ,  r’) = W(r’ ,  r )  = l / z ,  z being the coordination number of the 
underlying uniform (undilute) lattice. In this case, for t -* 00, all initial and final points 
are equally probable, p ( r )  = constant. Using the symmetry in W we can now write 

C ( r ,  - r2) w( r3 , r2) 8 ( r ;  - r2 - R) = C ( r2 - r3) w( r3 r2)6 ( r ;  - r3 - R )  
,2sr3 

= - f x ( r 3 - r 2 ) W ( r 3 ,  r2)VRS(r:-r2-R) ~ ( r 3 - r ~ ) .  

For a homogeneous translationally invariant lattice the final sums in (4) vanish by 
symmetry. In the more general case, we can use Z, W (  r, r ’ )  = 1 and E,( r - r’)2 W (  r, r ’ )  a 
a’ ( a  is the nearest-neighbour distance) to reduce (4) to 

K ( R ) a C V i S ( r ; - r 2 - R )  

On a fractal, the average density (ZS) of occupied sites at a distance R scales as IRID-d, 
where D and d are the fractal and Euclidean dimensionalities. Thus, K(R)alRI-2,  
as claimed above. 

For the ‘myopic’ ant we expect that p (  r )  a z (  r ) .  Thus, W (  r, r ’ ) p (  r ’ )  = W (  r’,  r ) p (  r )  
and the above symmetry arguments yield the same result ( 5 ) .  

If the average is performed at fixed t instead of fixed R, then the delta function in 
(3) must be replaced by P( r; - r2 ,  t ), the average probability to travel a distance ( r ;  - r2)  
in t time steps. Expecting a scaling form [ 2 , 5 ]  P(R, t )  = t-d,/2g(lR12+8/r), (4) will be 
replaced by 

as we found for the envelope IK( t ) l .  
To understand the regular oscillation in the sign of K ( t ) ,  as observed in figure 1, 

we next calculated K ( t )  exactly on various structures. On a regular hypercubic 
d-dimensional lattice, K (  t )  exhibits one oscillation [ K (  1) < 01 before it vanishes for 
t > 1. On a ‘comb’ lattice (a one-dimensional chain with dangling ends of one bond 
from each site), the solution for the myopic ant is K (  1) = :, K (  t )  = 16(-3)-‘/3( t > 1). 
Although the envelope decays exponentially, since this is not a self-similar fractal, the 
sign oscillations persist at all t .  The oscillations arise because of the anticorrelation 
between consecutive steps, dominated by the ends of the dangling bonds (at which 
the ant must turn back). Qualitatively, a similar effect arises in all dilute structures, 
since the bond for stepping back is always there, unlike some of the bonds for stepping 
forward. 
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An alternative way to solve for K ( t )  is to note that, on any finite cluster of N sites, 
one has 

P (  r, t )  = uA( r, 0)A' ( 6 )  
A 

where the A are the N eigenvalues of the matrix W(r,  r ' )  and where the walk started 
at site r = 0. For the myopic ant on a bipartite lattice, the eigenvalues appear in pairs, 
+\A\ and - \A\ .  Therefore, P ( r ,  t )  splits into two parts: 

[UlAl(', o)+(- l ) lu-lAl(r ,  o ) l ~ A ~ f *  
h 

Fixing the acceleration at t = 0, a(O), we can now use P (  r, t )  to calculate the average 
acceleration at time t:  

a ( t )  = C r [ P ( r ,  t + 1) + P(r, t - 1 )  - 2 P ( r ,  t ) ] .  
I 

Also averaging over the initial steps and the origin we end up with K (  t )  = EA kAA' 
and kA is proportional to A + A-' - 2 (and to some average projections of the initial 
state on the corresponding eigenvectors). For long times, the sum over A will be 
dominated by [AI near 1 ,  and the ratios klAl/ k+ become very small, so that K ( 1 )  is 
dominated by the negative eigenvalues, hence practically pure oscillations. We calculated 
these ratios explicitly for several percolation clusters and confirmed this result numeri- 
cally. For one percolating square lattice cluster of 192 sites, the ratio I k-l,,l/ kiAll remains 
larger than 2520 for the largest seven eigenvalues, with 1111 > 0.98, and has values smaller 
than 1 only for 26 eigenvalues, all in the range [A1<0.743. Indeed, the calculated 
function K (  t )  = Z kAA' shows no observable deviations from the pure oscillation 

For very large clusters, the sum over A may be turned into an integral, K (  t )  = 
( - l ) ' ~ d ~ A ~ n ( ~ A ~ ) k ( ~ A ~ ) ~ A ~ ' .  Our numerical finding that IK(r) l -  tCX, with x = 2 / ( 2 +  e), 
implies that n()Al)k()Al)  should scale as 1nlAl)". Our exact evaluation of n((Al)((A(), 
for relatively small clusters on a square lattice, indeed seems to fluctuate about (-lnlAl)", 
with x = 0.69. 

For the myopic ant on a bipartite lattice, A = -1 is always one of the eigenvalues. 
Therefore, at t >> 1, K (  t)  will always approach a non-zero oscillating value, k-,(-1)'. 
This term will be absent on non-bipartite (e.g. triangular) lattices. Our other results 
all apply to all lattices and to all kinds of (e.g. blind) ants. In fact, very similar pure 
oscillations, whose magnitude decays as r-', are also expected for the velocity-velocity 
correlation functiont. 

Finally, we mention an interesting possible relation between our results and the 
Langevin equation. If the equation of motion of a particle is mr+ yr = F(  t ) ,  and if 
the random force has zero average and power law correlations, ( F ( 0 )  - F( t ) )  - 
then the time-dependent diffusion coefficient is given by [ 113 D( t )  = Ct/Z( t) ,  where 
Z( t )  =I"-, ds( t +  s ) (F(O)  F ( s ) )  - t2-x,  so that D( t )  - tX- '  - (r ' (  t))-"*,  as expected for 
anomalous diffusion [ 2 ] .  Indeed, for timescales of order m /  y the Langevin equation 
yields a = i" F and everything is consistent. 

In conclusion, we have demonstrated that oscillations play an intrinsic role in 
acceleration and velocity correlation functions and that the magnitude of these correla- 
tions decays with a superuniversal exponent. 

t Oscillations in P( r, I )  on one-dimensional structures were previously discussed in [8]. Also, see a discussion 
on discontinuities in P in fractals [9]. Power law velocity-velocity correlations were previously discussed 
in the context of the Lorentz gas [lo]. 

(-1)'IW)l. 
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